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ABSTRACT

Early testing of requirements can decrease the cost of remov-

ing errors in software projects. However, unless done care-

fully, that testing process can significantly add to the cost of

requirements analysis. We show here that requirements ex-

pressed as topoi diagrams can be built and tested cheaply -

using our SP2 algorithm, the formal temporal properties of a

large class oftopoi can be proven very quickly, in time nearly

linear in the number of nodes and edges in the diagram.

There are two limitations to our approach. Firstly, topoi dia-

grams cannot express certain complex concepts such as itera-

tion and sub-routine calls. Hence, our approach is more use-

ful for requirements engineering than for traditional model

checking domains. Secondly, our approach is better for ex-

ploring the temporal occurrence of properties than the tem-

poral ordering of properties. Within these restrictions, we

can express a useful range of concepts currently seen in re-

quirements engineering, and a wide range of interesting tem-

poral properties.

Keywords
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1 INTRODUCTION

The case for more formality in requirements engineering is

overwhelming. Many errors in software can be traced back

to errors in the requirements [32]. Often, the conception of

a system is improved as a direct result of the discovery of

inadequacies in the current conception. The earlier such in-

adequacies are found, the better, since the cost of remov-

ing errors at the requirements stage can be orders of mag-

nitude cheaper than the cost of removing errors in the final

system [33].

The benefit of formally checking a system is that formal

proofs can find more errors than standard testing. A single

formal first-order query is equivalent to many white-box or

black-box test inputs [19].

The cost of rigorous requirements engineering may be im-

practically high. These costs include:

The modeling cost: Analysts must create a systems model

and a properties model. Both models are in some

The
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The

machine-readable form. The properties model is often

much smaller than the systems model and contains a

formal temporal logic I description of the invariants that

must be proved in the systems model.

execution cost: A rigorous analysis of formal prop-

erties implies a full-scale search through the systems

model. For example, if a given systems model has n

variables each of which may take on a finite number of

unique values m, then the size of the state space asso-

ciated with that model is m n. This space can be too

large to explore, even on today's fast machines. Despite

extensive research into speeding up this search (see our

Related Work section), analysts often have to painstak-

ingly rework the systems and properties models into

more abstract and succinct forms that are small enough

to permit formal analysis.

personnel cost: Analysts skilled in formal methods

must be recruited or trained. Such analysts are gener-

ally hard to find and retain.

development brake: The above costs can be so high

that the requirements must be frozen for some time

while we perform the formal analysis. Hence, one of

the costs of formal analysis is that it can slow the re-

quirements process. Slowing down the requirements

process is unacceptable for fast moving software com-

panies, such as the start-up dot.corns.

Ideally, a method for reducing the cost of testing require-

ments would eliminate the execution cost and reduce the

cost and skill involved in building the properties and systems

models. If achievable, such a method would also reduce the

personnel cost, since it would not require such highly-skilled

analysts. Having reduced the personnel, modeling, and exe-

cution costs, this hypothetical method would inevitably de-

crease the deveh)pment brake.

Some progress has already been made in reducing the cost

of properties modeling using temporal logic patterns. Dwyer

et.al. [9,10] have identified patterns within the temporal logic

t Temporal logic is classical logic augmented with some temporal oper-

ators such as UIX (always X is true), OX (eventually X is true), Q)X (X
is true at the next time point), X 1,3Y: (X is true until Y is true),



Capabilitis[driver] <
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Available-reaction-time[driver]

Slacker[period]

- Driving-period[driver]

Age [driver] "_.._...,_._._ _+

Complexity[situation],_._ _ce[driver]_

Risk-of-accident[driver]

Power[vehicle] _ Speed[vehicle] State-quality[vehicle] -_---:--------Age[vehicle]

_+
t vehtcle //Avoidance-action-quality[driver] " " er [ ' ] Importance[deformation]

Figure 1: An example topoi from [7]. The formal semantics for topoi is described below. Informally, we say that + approxi-

mates "encourages" while - approximates "discourages".

formulae seen in many real-world properties models. For

each pattern, they have defined an expansion from the intu-

itive pseudo-English form of the pattern to a formal tempo-

ral logic formulae. In this way, analysts are shielded from

the complexity of formal logics. For example, the simple

pseudo-English statement

always(brake = on) between(danger = seen) and(car = stop)

can be automatically expanded into the more arcane formal

statement:

O((danger = seen A !(car = stop) A 0 (car = stop))

--_ (brake = on O (car = stop)))

One drawback with temporal logic patterns is that while

complex temporal formula can be automatically generated

from intuitive pseudo-English, the execution cost remains.

That is, even though we can quickly build the properties

model, we may not be able to execute all of that properties

model.

In this article, we argue that we can greatly reduce the exe-

cution cost for a class of systems models seen in the require-

ments stage, and for a large class of temporal logic prop-

erties. In our approach, we use temporal logic patterns to

reduce the cost of properties modeling, and optimization to

reduce the execution cost. The key to this reduction is SP2,

a new algorithm for testing temporal properties of topoi,

which are statements of gradual influences between vari-

ables. Topoi can represented graphically by topoi diagrams,

an example of which is shown in Figure 1. Topoi are quick

to sketch, and so (for requirements that are topoi-compatible)

our approach also reduces the systems modeling cost.

These cost-reduction benefits can only be realized if we ac-

cept certain restrictions:

• Our approach limits the kinds of properties that can be

tested.

• The systems model must be expressed as topoi dia-

grams. Topoi are not very expressive and excludes

statement such as first-order assertions, iteration, sub-

routine calls, and assignment.

• Due to these language limitations, our approach is not

suitable to domains that need the excluded statements;

e.g. complex protocols seen in concurrent processes.

These restrictions are not fatal to the modeling process, at

least at the requirements stage:

• We will describe how to quickly recognize inadmissible

properties statements. Further, we will use the Dwyer

et.al, survey to show that within the limits to the prop-

erties language, we can represent a wide range of useful

temporal logic properties.

• We will show that topoi diagrams are sufficient to rep-

resent diagrams seen in certain approaches to require-

ments engineering and recording design rationales.

Hence, when we say that this approach is practical and

useful, we really mean practical and useful for early life

cycle requirements discussions only.

This worked is based on Feldman & Compton's study of

the validation of topoi [11, 12] (which they called qualita-

tive compartmental models). Menzies tried to optimize that

validation process and offered an implementation that was

orders of magnitude faster than the validation engine built by

Feldman & Compton. However, he could not reduce the ex-

ponential upper-bound on the runtimes [21-23]. Assuming

a certain restriction on topoi edge types, Cohen, Menzies,

Waugh and Goss showed that the cost of checking tempo-

ral properties of topoi-based simulation is a function of the



numberoftime-ticksinthequery[24,25].Thispaperim-
provessignificantlyontheMenzieset.al,result.Weassume
thesamerestrictionasMenzieset.al,andintroduceSP2,a
nearlylinear-timealgorithmforcheckingalargeclassofin-
terestingtemporalproperties(forspacereasons,wedescribe
thefulldetailsofthatalgorithmelsewhere[27]).Also,we
describeanimplementationofSP2which,inatleastonedo-
main,out-performsastate-of-the-arttemporallogicmodel
checker(SPIN[15]).

2 About Topoi

Our approach assumes that requirements systems models are

expressed in the form of topoi; i.e. statements of gradual

statements such as (i) the more X, the more Y; (ii) the less X

the less Y; (iii) the more X, the less Y; or (iv) the less X the

less Y. Dieng et.al, name such statements "topoi" and give

numerous examples from their records of interviews with ex-

perts [7]. For example:

The more there is water infiltration in the roadway

body, the worse the foundation risks to be.

The higher the speed of the vehicles, the more im-

portant the measure of importance relative to the

roadway comfort.

When the geometry increases, the mass increases

and the frequency decreases.

If there is a punctual undressing and if the road-

way is between five and fifteen years old, then the

causes "too old coating" is all the more certain

since the roadway is older.

Our experience has always been that the systems modeling

cost with topoi is very low. Topoi graphs can be quickly

generated in the requirements stage. Two feuding stakehold-

ers with two marker pens and one whiteboard can generate

many, many topoi in just a few hours.

Topoi graphs can be found in many domains. Figure 1

showed a topoi from an insurance domain using the graph-

ical notation of Dieng's 3DKAT tool. Figure 2 show some

Mylopoulos-style soft-goal graphs [28, 29]. Soft-goal graphs

represent gradual knowledge about non-functional require-

ments. In Figure 2, an expert describes how to increase

business flexibility. Figure 3 shows a "questions-options-

criteria" (QOC) graph from the design rationale commu-

nity [34]. In such QOC graphs, questions suggest options

and deciding on a certain option can raise other questions.

Options shown in a box denote selected options. Options

are assessed by criteria and criteria are gradual knowledge;

i.e. they tend to support or tend to reject options. QOCs can

succinctly summarize lengthy debates; e.g. 480 sentences

uttered in a debate between two analysts on interface options

can be displayed in a QOC graph on a single page [20].

Figure 5 shows topoi generated from the requirements of a

rule-based legal system, shown in Figure 4. This translation

usability performance

\/
flexibility

flexible

work maintainability
patterns

,1+
and

/+\+
sharing of task

information switching

Figure 2: A soft-goal graph: the and node denotes that both

sharing of information and task switching are enabled by

flexible work patterns.

Criterion3

Option Ia

Criterionl

\ Optionlc _ Questionl

Criterion2

Option2a + x,_

+ Question2

Option2b _

Option2c

Figure 3: A questions-options-criteria graph from [34]

assumes that propositions in the rule base are modeled as

a belief/strength pair where the strength is some continuous

number.

When collected from multiple stakeholders, gradual state-

ments can be quite complex, quite large, and contain feed-

back loops. Smythe extracted a list of gradual influences



Figure4:Rule-basedrequirementsfromalegalsystem.
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Figure 5: Topoi from Figure 4.
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Figure 6: The Smythe '87 theory. From [35]. The diagram

shows statements of gradual knowledge relating to labora-

tory experiments on mammals.

/\

\ 11 \1

Figure 7: A large topoi with many loops.

from a set of articles from different authors relating to human

internal physiology. The resulting network contains loops;

see Figure 6. The experiments described later in the paper

are based on the large topoi of Figure 7.

A pre-experimental concern is that informal topoi are so

under-defined that we could use them to infer any proper-

ties at all. This turns out not to always be the case. Recall

Figure 2 and the fragment:

usability _7+flexibility (-- performance

Note that there is no way to explain the

output of {flexibility 1"} from the input of

{usability _,performance t}. That is, while topoi are

over-generalized, they may still be restrictive enough to

demonstrate what cannot be proved. We describe below

experiments which show that large real-world topoi can

be restrictive enough to block an interesting number of

temporal properties.

Topoi: Formal Semantics

Formally, we say that a topoi is a directed, possibly cyclic

graph 67 containing vertices and edges < V, E >. E are the

connectors between variables and are one of a set of pre-

4



definedtypes;e.g.--%or_. Thatis:

G = <V,E>

The vertices of a topoi can be assigned a finite number of

values; e.g. up, down or steady. These values model the

sign of the first derivative of these variables (i.e. the rate

of change in each value). X _+ Y denotes that Y being up or

down could be explained by Xbeing up or down respectively.

That is:

-_ Vj :_ { Vi _ implies Vj $ (1)¼
Vi J, implies Vj $

(where 1" and + denote up and down respectively.)

X -_ Y denotes that Y being up or down could be explained

by Xbeing down or up respectively. That is:

Z_>Vj - _ Vi _ implies Vj $Vi
Vi $ implies Vj $ (2)[

Tacit in our topoi diagrams are conjunctions of influences.

We can view topoi as influences splashing around pipes that

connect tubs. Pairs of competing influences can cancel out.

That is, we can explain the level of water in a tub remaining

steady via conjunction of competing upstream influences;

e.g.

and implies implies

(Vk $ implies Vj 4) (Vj = steady)

(3)

This formal semantics is sufficient to guide the translation

of topoi for a formal model checker such as SPIN. Figure 8

shows the results of such a translation of Figure 6. In this

figure, all the nodes have the values up, down, steady and

unknown (which is a placeholder for the initial conditions).

Also, for convenience, all systems model inputs X are de-

clared to be Xchg variables with values arrived, left denot-

ing the differences between these variables in different ex-

periments. For example, if we increase the injections ofdex,

then we also say that dexchg = arrived.

Proving Formal Properties in Topoi

We can test topoi using libraries of expected or desired be-

havior. Such libraries can be quickly built via interviews
with users. We have found it useful to structure these in-

terviews in an OO framework. After generating use cases

and particular scenarios [18], we ask our users to clarify ex-

actly what are the expected inputs and required outputs for

each scenario. This generates two artifacts. Firstly, it leads

to topoi graph describing how they think influences should

propagate around a systems model. Secondly, it leads to the

formulation of properties models of the form:

When I do this, I expect to see that.

#define DOWN 0

#define STE/tDY 1

#define UP 2

#define [rNDEF 3

#define ARRIVED 0

#define LgFT l

byte chg_cold_swlm = UNICEF /° chq_cold_swlm = (ARRIVED,LEFT} °/

byte chg_dex = tY_EF /° chg_dex = {_RR_VED,SNIM} °/

byte cold_swim = UNDRF /* cold_swim = {DOWn,STEADY,UP} "/

byte de• = t_DgF /° de× (DOWN,STEADY,UP} *I

byte _emp • _rDEF /• temp • {DOWN,STEADY,UP} °/

byte nna • ff_DEF /* r_na . {DOWN,STEADY, UP} °!

byte acth • _'NDEF /" acth • {DOWN,STEADY, UP} °/

byte cortico • UND£F /* cortlco _ {DOWN.STEADY,_P} °/

active proct_pe mmy_he{: {

if

::dex i• tr_F • dex = DO_

::de• == tr_D_F ._ dex = STEADY

::de• LV_DEV dex UP

fl;

if

::cold_lwim == _EF -_ eold3wim • DOWN

::cold_swim ._ _]_EF -_ cold__wlm • STEAEY

_:cold_wim •• _Y_EP -. cold_s_i_ • UP

fl;

if

::ch9dex =i tn_3E_ -_ chgdex = ARRIVED

::chgdex •= t_EF -• ch9_dex w LEFT

if

::chgcold_swim == Lv_D_F -_ chg¢old__wi_ = ARRIVED

::chg_cold_0wim == UNDEF -_ chg_cold_swi_ = L_FT

fi;

if

::chgdex i= AR:_IVED -• temp • UP

::chgdex m= LE-'T -• _e_p • DOW_

ft;

_f

::chg_cola_$w_m •• ARRIVED -> nna • UP

::ehgcold_sw_m .= LEFT -> n_a • DOWN

fi;

do

::{chg cold swim =• ARRIVED _ _emp =_ IYPl -_ nn_ • STEADY

:{chg_coldswim _EFT _ t_mp =• DOWNI -_ nna =

w _

#TE_Y

::_e_p =_ DOWN -_ nna _ UP

::_e_"4p == UP -_ nn8 • DOWN

:_emp DOWN -_ _cth • _P

=:_emp == UP -_ ac_h = DOWn4

:_nna == _ -_ ac_h • UPI>OWN
::nna D0W_ -. acth =

::acth =• U_ -. c_rtico = UPDOWN
::acth DOWN -_ coat,co =

::cortico =- _P -> te_p = U_

::{cor_ieo -• UP _ ehg_dex _ LEFT) -_ _emp = #TEA_Y

::cortico i= DO_ °. t_mp = CC_

::{c_rt_co == D3WN && chg_dex =• ARRIVED} -• _e,rp = $Tg_DY

::(temp == DOW_ _& nna == DOWn) -_ ac_h = STEA_Y

od;

}

Figure 8: Figure 6 expressed in the PROMELA language

used in SPIN model checker [15].

or, in the language of temporal logic used in (e.g.) SPIN:

l3 (Inputs _ 0 Outputs) (4)

i.e. always the inputs lead, eventually, to the outputs.

We encounter problems if we use Equation 4 to check large

topoi using standard model checkers. While SPIN checks

Equation 4 against Figure 8 in less than a second, it can fail to

terminate for larger systems models. In one study, we offered

40 properties of the form of Equation 4 to SPIN along with

Figure 7 expressed in the same format as Figure 8. Given

100MB of maximum RAM, SPIN ran out of memory for

most of the properties. We suspected that the search space

was too big. Figure 7 contains 80 variables, each of which

has at least the values up, down, steady, under; i.e. total

space of options at least of size (4 s° _ 104s). In a sec-

ond study, we reduced the size of the system by removing

the steady values. This shrank the options to (3 s° _ 103s).

However, even in this reduced system, SPIN ran out of mem-

ory and failed to prove anything for 29 of the 40 proper-



ties [31 ].

In summary, while theoretically we can assess topoi using
standard model checkers, in practice, this may not be feasi-
ble.

3 SP2: A Model Checker for Topoi
While general topoi defeat general-purpose model checkers,

specialized model checkers can quickly check the temporal

properties of a restricted class of topoi. Consider a topoi
containing two-valued nodes connected by the "+" and "-"

edges defined in Equation 1 and Equation 2. Such a topoi has
symmetric edges; i.e. each edge comments on a connection

of every upstream node's value to every downstream node's
value. Menzies et.al, showed that when every edge of a sym-

metric topoi comments on all the values of its downstream
vertices, then the state space rapidly saturates [24, 25]. That

is, the granularity of the time axis reduces to the number of
variables in that theory. For example, in a systems model

where every variable has only two values, everything that is
reachable can be reached in two time ticks.

Using the result of Cohen et.al we have defined SP2, a spe-
cialized model checker for symmetric topoi [27, 31 ]. SP2 is

a variant of Dijkstra's shortest path algorithm [6, 8]. The al-

gorithm inputs a symmetric topoi with edge set E, node set
V, and an initial set S C V. S contains some value assign-
ments to some nodes and represents the initial conditions of

the system. The algorithm outputs a set of edges Z with the

following properties:

• Z is a collection of trees spanning all the nodes reach-

able from the inputs.
• For any reachable node z, Z contains the shortest topoi

path from the inputs to z.
• The nodes of V spanned by g are partitioned into two

sets S _and T', where:

- No edge of Z passes from T _ to S t.
- Each set is consistent; that is, will not contain both

x j'andx $.

Elsewhere, we have proved that SP2 generates S _and T _cor-

rectly, and runs in O(IVl + IEI log IVI) time in the worst
case [27]. SP2 is efficient due to its exploitation of satura-

tion. While spreading out over the topoi, it maintains two
sets of nodes: the now set (S') and the later set (T'). If

the algorithm reaches a node that contradicts something else
in the now, it moves the new node into the later set. The re-

peated application of this rule on a 2-spaced symmetric topoi
results in a fast division of the nodes reachable from the ini-

tial conditions into the two sets S _and T'.

Using SP2, we can very quickly explore temporal properties

that can be proved in two time ticks. A large range of in-
teresting queries can be executed in two time ticks (but see

below for a discussion on the properties that require more
than two time ticks). Once S' and T' are generated, we can

convert our temporal properties into set membership tests of

exp --+ [] exp //always

0 exp //eventualy

O exp //next
exp W exp //weak until

exp U exp //until

exp A exp //conjunction

exp V exp //disjunction

exp --_ exp //implication

! exp //negation

x //proposition

exp W exp --_ (exp U exp) A I[] exp

I"l exp -I. (x E now') A (x E later')

0 exp --t, (x E now') V (x E later')

O exp --_ (x E later')

expl U exp2 _ (y E now') V ((x E now') A (y E later'))
expl A exp2 --_ (x E now') A (y E now')

expl V exp2 ---1.(x E now') V (Y E now')

expl _ exp2 _ (y E now') V ((x ¢ now') A (y _' now'))

expl w exp;_ --+ (expl U exp2) V (I-1 expl)

! exp --+ (x ¢ time)

x --_ (x E time)

time _ now' ] later'
now' --_ S'

later' -+ t'

Figure 9: Rewrite rules for converting linear temporal logic
expressions into set membership tests of SP2's S', T'.

these sets. Figure 9 and Figure 10 show conversion rules for

common temporal properties.

SP2 offers two major other advantages over standard tempo-

ral reasoning:

1. SP2 runs, terminates, returns Z, and then we perform

set membership of Z to prove our properties. That is,
we do not test for properties till after SP2 terminates.
Hence, the inference time is not much affected by the

complexity of the properties to be tested.

2. SP2 uses a shortest-paths tree to build its proofs. That
is, when explaining how properties were reached, SP2

will generate the shortest explanation possible, Hence,
a user of SP2 need not wade through mountains of trace

files in order to understand how the properties were

proved.

Experiments with SP2
Figure 11 shows a comparison of SPIN vs SP2 using prop-

erties of the form of Equation 4 and the systems model of

Figure 7. Of the 40 properties which were analyzed by both
SPIN and SP2, SPIN was able to return a verification result
in only 11 out of 40 cases (27.5%) before running out of

memory. In every case where SPIN did return a verification

result, SP2's result was in agreement.

Regarding computer resources, SP2 used less than 1% of the
RAM required by SPIN. Also, in the case of the unprovable

properties, SP2 terminated in less than a second CPU time

while SPIN took much longer.



Figure IO.A: Absence properties: p is false
SP2Property

Globally

Before R

After Q

Between Q and R

After Q until R

LTL

D(_p)
0R-_(!pUR)

D(Q-_ Vl(!p))

vI((Q A!RA O R)--_(!pUR))

O(Q A!R-_(!pl_q_,))

p¢S'ApeT'

RE S'VR_'T'Vp¢S'

(QES'V(peS'ApeT'))A (QET'Vp_'T')

(Q_/'T'VpeT')A (Q¢S'VRE S'VR_T'VpeS')

(QC'T'VRET') A(QeS'VRE s'V(peS'ARET'))

Figure IO.B: Existence properties: p becomes true

Globally

Before R

After Q

Between Q and R

After Q until R

O(p)
!R W(pA!R)
C](!QV 0(QA 0p))

i-'l(Q A!R-+(!RW(pA!R)) )

F-I(Q A!R_(rRU(pA!R))

pES'VpCT'

(pES'A(RCS'VpET')) v (RCS'ApET'ARET')

pET'V((Q¢S'VpES')AQeT')

QES'AQCT'ApET' A (RES'VpES'VR¢T')

QES'AQET' A (RET'VPET') A (RE S'MpES'V(pET'ARC'T'))

Figure lO.C." Universality: p always true

Globally O(p) pES'ApET'

Before R OR---_ (PUR) REs'V(RET'ApES')

After Q i--I(Q--r D(p)) (QC'S'V(pES'ApET')) A QeT'VpET')

Between Qand R U]((QA!R A 0R)--+(pUR)) QES'VRES'VR_/'T'VpCS'

After Q until R O(QA!R-_(pWR)) QES'AQET'A(RES'VpES')A (RET'VPET')

Figure IO.D: Precedence: S precedes p

Globally !pWS S¢s'V(pE S'A(p¢T'VSET'))

Before R OR--+(!pU(SVR)) SES'VRES'VR_'T'Vp_S'

After Q i--I!QVO(QA(!pWS)) (Q¢S'AQ_'T') V (QES'A(S_s'v (p_/'S'A(p_T'VSET')))

V(QE T'Vp_j/'T' V SET')))

Between Q and R n((QA!RA 0R)--_ (!pU(SVR))) Inexpressible: needs > 2 time ticks

After Q until R F-I(QA!R-_(!pW(SVR))) (SES'VRES'V(pC'S'ApC'T') V (pES'A(SET'VRET')))A (SET'VRET'VpeT')

Figure IO.E: Response: S responds to p

Globally D(p--} OS) SET'V(peT'A(p¢s'vsE S'))

Before R 0R--+(p--+ Inexpressible: needs > 2 time ticks

(!RU(SA!R)))UR

After Q O(Q-+ O(p--} OS)) SET'V((QC's'V(peT'A(pC'S'VSES')))A (Q_'T'Vp_'T'))

Between Q and R I-I((QA!RA 0R)--_ Inexpressible: needs > 2 time ticks

(p_(!RU(SA!R)))U R)

After Q until R D(QA!R_

((p--} (!RU(S A !R))) WR)) QES'AQET'A (RET'VSET'Vp_gT')

Figure 10: Common temporal logic queries converted into set membership tests of SP2's S', T'. This table was generated by

applying the re-write rules of Figure 9 to a survey of common temporal logic queries [9, 10]. From [31].

I RAM used (max)

SPIN SP2 Number oCa-f'C-'_-_-

?? proved 21

?? unproved 8

proved proved I 1

unproved unproved 0

proved unproved 0

unproved proved 0

100MB < 1MB

Figure 11 : Proving properties of Figure 7 in SPIN and SP2.
"??" denotes that SPIN did not terminate in 100MB of RAM.

We mentioned earlier that one pre-experimental concern
with informal topoi is that they are so under-defined that we

could use them to infer any set of properties at all. Figure 11
shows that this is not always true. In the case of 8 of the 40

properties, SP2 could not prove them across the large under-

defined topoi of Figure 7.

Limits to SP2

What are the practical implications of SP2's restrictions? We
discuss below two important implications: restrictions of the

properties that can be proved and the need for special tools

to handle conjunctions.

Inadmissible Properties

Figure 12 shows Dwyer et.al.'s classification of over five

hundred linear temporal logic (LTL)properties [9,10]. Those
properties divide into eight groups and each group contains

the five temporal scopes seen in Figure 10; i.e. globally; be-
fore event R; after event Q; events Q and R; and after event

22 of these scopes are expressible in termsQ until event R. T6
of two time ticks [31]. The inexpressible scopes all require

proving some ordering of > 2 events. By definition, such
an ordering cannot be expressed using merely the two time

intervals of S' and T' generated by SP2.

Figure 12 shows us that SP2-style inference on symmet-
ric topoi can say more about the occurrence of a given

event/state during system execution than about the ordering

in which multiple events/states occur. It is a simple matter to
detect the temporal properties that are inadmissible for SP2.
All such properties require more than two time ticks; e.g.



Occurrence { _+5+5+o=t5 ,_
20 ]

Order { 4-t-z+o+0=r
k 20 /

Absence (_)

Universality ( _ )

Existence (5)

Bounded Existence (°)

{ P ecedence
Response ( _ )

Chain Response (o)

Chain Precedence (o)

Figure 12: Coverage of the Dwyer corpus of temporal prop-

erties by SP2. Each right-hand-side group of properties con-

tains five scopes. Fractions denote how many of those scopes

can be handled by SP2, as seen in Figure 10. Adapted from

[31].

until operators nested to a depth greater than two such as:.

(day=sundayU(day=mondayUday=tuesday))

Handling Conjunctions

Another problem is that symmetric topoi have no special

knowledge of and-nodes. This can lead to some less-than-

desirable results. Consider the following topoi:

usability Y-+flexibility (-- performance

Equation 3 says that the conjunction of competing upstream

influence can result in a steady value in a downstream vari-

able; i.e.

usability _ --+ andO01

performance`[ -4 andO01

andO01 -_ flexibility = steady (5)

where andO01 is an and-node especially created for this

conjunction. A reasonable temporal interpretation of and-

nodes is that all pre-conditions must appear before or at

the same time as the post-conditions. Suppose we seek to

flexibility = steady E S t, but SP2 computes a node partition

in which usabilityt 6 T' and performance`[ E T'. We would

like to be able to coax these pre-conditions back in time to

S' such that they do not occur at a time that is later than

flexibility = steady E S'.

Another case where we want to coax edge weights is the bad-

and situation. The rules of symmetric topoi require that if

we create the edges shown in Equation 5, then we must also

create the following complementary rules:

usability `[ --+ andO01

performance _ _ and001

andO01 --+ flexibility = steady (6)

where X is an invented node representing "all the other
values of X". The addition of the nodes andO01 and

flexibility = steady is required to ensure the symmetry prop-

erties upon which SP2 is dependent. However, they are just

nonsense symbols that should never appear in any explana-

tion of how certain inputs lead to certain properties. That

is, pathways from inputs to properties should never include

these nonsense symbols. Hence, if possible, SP2 should be

'coaxed' into producing shortest path trees in which these

spurious nodes appear at the leaves.

SP2 contains a mechanism to implement such coaxing: each

edge in the topoi is augmented with an edge weight, which

SP2 uses to compute shortest paths - the length of a path is

simply the sum of the weights of the edges along the path.

At the core of SP2 is a priority queue. At runtime, the next

edge to be explored is one of the edges with lowest weight

within the queue. This means that by adjusting weights and

re-running the algorithm, we can choose to explore edges at

some earlier time or later time. Hence, to coax usability_ and

performance.[ into S t , we can adjust the weights upstream

of those nodes. In coaxing, the weights can be adjusted ar-

bitrarily, provided that the any symmetric pair of edges re-

ceives the same weight for both edges. Elsewhere [27] we

define a set of minimal edge adjustment heuristics which in-

put SP2's shortest path tree Z, the cut set C containing the

edges that connect S' to T' and which outputs changes to the

edge weights.

A major pre-experimental concern was that the nearly linear-

time processing of SP2 could be followed by an indefinitely

long coaxing process. After much experimentation, we can

report that we have never seen this worst-case behavior in

practice. In those experiments we used SP2 to explore ran-

domly generated properties of the form of Equation 4 over

dozens of randomly generated topoi graphs. We varied topoi

fanout (2 to 6 edges per node) and the frequency of and-

nodes (from 5% to 75%). Each experiment was terminated

when the % of provable properties reached some plateau. In

all the experiments, the plateau was reached after < 5 iter-

ations of SP2+coaxing. Also, the plateau reached after l0

coaxes barely changed in up to 100 coaxes. Further, SP2

never used more than 1MB of memory or one minute of run-

time. Our conclusion from these experiments is that the need

for heuristic coaxing does not diminish the time and space

efficiency of SP2.

4 Related Work

We are hardly the first to explore formal methods for require-

ments engineering. For example:

In the KAOS system [36], analysts generate a properties

model by incrementally augmenting object-oriented

scenario diagrams with temporal logic statements. Po-

tentially, this research reduces the costs of formal re-

quirements analysis by integrating the generation of the

properties model into the rest of the system develop-

ment. Our reading of the KAOS work is that while the

resulting model may be more formal, the level of skill



requiredtowritethetemporallogiccansignificantlyin-
creasethepersonnelcost.Further,theextratimere-
quiredfortheaugmentationcouldincreasetheeffectof
thedevelopmentbrake.

• Schneideret.al.[33] explored reducing the manual

modeling costs using lightweight formal methods. In

the lightweight approach, only partial descriptions of

the systems and properties models were constructed us-

ing the SPIN formal analysis tool [15]. Despite their

incomplete nature, Schneider et.al, found that such par-

tial models could still detect significant systems errors.

While exciting research, this approach still incurs the

personnel cost since scarce expertise is required to drive

tools like SPIN.

Nor are we the first to explore optimizing temporal logic

model checking. Elaborate tools have been developed to

tame the state space explosion problem including:

Abstraction or partial ordering: Only use the part of the

space required for a particular proof. Implementations

exploiting this technique can restrain how the space is

traversed [14, 26], or constructed in the first place [13,

33].

Clustering: Divide the systems model into sub-systems

which can be reasoned about separately [2, 4, 30, 37].

Meta-knowledge: Avoid studying the entire space. Instead,

only study succinct meta-knowledge of the space. One

example used an eigenvector analysis of the long-term

properties of the systems model under study [17].

Exploiting symmetry: Prove properties in some part of the

systems model, then reuse those proofs if ever those

parts are found elsewhere in the systems model [3].

Semantic minimization: Replace the space with some

smaller, equivalent space [16] or ordered binary deci-

sion diagrams [1]. For example, the BANDERA sys-

tem [5] reduces both the systems modeling cost and

the execution cost via automatically extracting (slicing)

the minimum portions of a JAVA program's bytecodes

which are relevant to particular properties models.

While the above tools have all proved useful in their test do-

mains, they may not be universally applicable.

• Certain optimizations require expensive pre-processing,

such as [ 17].

• These methods may rely on certain topological features

of the system being studied. Exploiting symmetry is

only useful if the system under study is highly sym-

metric. Clustering generally fails for tightly connected

models.

Also, for requirements engineering, systems like BAN-

DERA are not suitable. BANDERA only works on imple-

mented systems; that is, not until long after the requirements

phase has ended.

Hence, in the general case, only small models can be tested.

Further, these models must be precisely specified. In con-

trast, this work describes methods for quickly proving prop-

erties in large models that have been hastily sketched.

5 Conclusion

We need better formal testing for our requirements. Apply-

ing formal methods can lead to an unacceptable brake on the

development process. Cost-effective formal methods have to

reduce the cost and skill involved in modeling systems and

their properties. The cost of properties modeling can be re-

duced via temporal logic patterns. However, the execution

cost of the resulting properties model may require expensive

rework of the properties generated from the patterns.

In the specific case of requirements that can be mapped into

symmetric topoi, we have shown that the systems modeling

cost is reduced (since the topoi can be sketched quickly). For

such symmetric topoi, we can reduce the execution cost for

proving formal properties to time that is nearly linear on the

number of edges and nodes in the topoi.

The combination of easy specification of properties and sys-

tems models implies that the personnel cost of formal mod-

eling is reduced. This cost-reduction can only be achieved in

domains were the systems model can be expressed as topoi

and the properties model refers more to temporal occurrence

properties than temporal ordering properties. We have ar-

gued that requirements engineering is one such domain.

Having built the SP2 engine, our next goal is the construc-

tion of a shell that exploits this engine. Our current research

goal is the construction of the RAPTURE shell. RAPTURE

exploits SP2 to enable the fast formal analysis of topoi-

compliant descriptions of software systems.
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